Theorem 1 (The Cauchy-Buniakowski-Schwarz Theorem) If \(u, v \in \mathbb{R}^n \), then

\[|u \cdot v| \leq \|u\| \|v\|. \]

Equality holds exactly when one vector is a scalar multiple of the other.

Proof I. If either \(u = 0 \) or \(v = 0 \), then \(u \cdot v = 0 \) and \(\|u\| \|v\| = 0 \) so equality holds. For the remainder of the proof, we will assume that \(u \) and \(v \) are nonzero vectors.

Let \(\alpha \) and \(\beta \) be arbitrary scalars. Then \(\|\alpha u + \beta v\|^2 \geq 0 \).

Using properties of lengths and dot products,

\[
\|\alpha u + \beta v\|^2 = (\alpha u + \beta v) \cdot (\alpha u + \beta v) = \alpha^2 u \cdot u + \alpha\beta u \cdot v + \beta\alpha v \cdot u + \beta^2 v \cdot v = \alpha^2 \|u\|^2 + 2\alpha\beta u \cdot v + \beta^2 \|v\|^2
\]

Since this holds for all scalars \(\alpha \) and \(\beta \), we are free to choose \(\alpha = \|v\| \) and \(\beta = \mp \|u\| \). Substituting,

\[
\|\alpha u + \beta v\|^2 = \|v\|^2 \|u\|^2 + 2 \|v\| (\mp \|u\|) u \cdot v + (\mp \|u\|)^2 \|v\|^2 = 2 \|v\| \|u\| (\mp \|u\| \mp u \cdot v)
\]

Since \(u \) and \(v \) are nonzero vectors, \(\|u\| > 0 \) and \(\|v\| > 0 \), so \(\|\alpha u + \beta v\|^2 \geq 0 \) is true exactly when \(\|v\| \|u\| \mp u \cdot v \geq 0 \). That is, exactly when \(\|v\| \|u\| \geq \pm u \cdot v \), which is the same as \(\|v\| \|u\| \geq \|u \cdot v \| \).

Note that \(\|v\| \|u\| = |u \cdot v| \) exactly when \(\|\alpha u + \beta v\|^2 = 0 \), which is exactly when \(\alpha u + \beta v = 0 \). Since \(u \) and \(v \) are nonzero vectors, \(\alpha u + \beta v = 0 \) implies either \(\alpha = \beta = 0 \) or else \(u \) and \(v \) are scalar multiples of each other. Since \(\alpha \) and \(\beta \) are nonzero, one vector must be a scalar multiple of the other.
Proof II. If either \(\mathbf{u} = \mathbf{0} \) or \(\mathbf{v} = \mathbf{0} \), then \(\mathbf{u} \cdot \mathbf{v} = 0 \) and \(\|\mathbf{u}\| \|\mathbf{v}\| = 0 \) so equality holds. For the remainder of the proof, we will assume that \(\mathbf{u} \) and \(\mathbf{v} \) are nonzero vectors.

First, suppose that \(\mathbf{x} \) and \(\mathbf{y} \) are unit vectors. Using properties of lengths and dot products,

\[
\|\mathbf{x} \pm \mathbf{y}\|^2 = (\mathbf{x} \pm \mathbf{y}) \cdot (\mathbf{x} \pm \mathbf{y}) = \mathbf{x} \cdot \mathbf{x} \pm 2 \mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y} = \|\mathbf{x}\|^2 \pm 2 \mathbf{x} \cdot \mathbf{y} + \|\mathbf{y}\|^2 = 1 \pm 2 \mathbf{x} \cdot \mathbf{y} + 1 = 2 (1 \pm \mathbf{x} \cdot \mathbf{y})
\]

Since \(\|\mathbf{x} \pm \mathbf{y}\|^2 \geq 0 \), \(1 \pm \mathbf{x} \cdot \mathbf{y} \geq 0 \). This is the same as \(1 \geq \mp \mathbf{x} \cdot \mathbf{y} \). Thus, \(|\mathbf{x} \cdot \mathbf{y}| \leq 1 \). Further, equality holds exactly when \(\mathbf{x} \pm \mathbf{y} = \mathbf{0} \), which means that \(\mathbf{y} = \pm \mathbf{x} \).

Now suppose that \(\mathbf{u} \) and \(\mathbf{v} \) are general nonzero vectors. Then \(\|\mathbf{u}\| > 0 \) and \(\|\mathbf{v}\| > 0 \) so \(\mathbf{x} = \frac{1}{\|\mathbf{u}\|} \mathbf{u} \) and \(\mathbf{y} = \frac{1}{\|\mathbf{v}\|} \mathbf{v} \) are unit vectors. Then

\[
\begin{align*}
|\mathbf{x} \cdot \mathbf{y}| & \leq 1 \\
\left| \left(\frac{1}{\|\mathbf{u}\|} \mathbf{u} \right) \cdot \left(\frac{1}{\|\mathbf{v}\|} \mathbf{v} \right) \right| & \leq 1 \\
\frac{1}{\|\mathbf{u}\|} \cdot \frac{1}{\|\mathbf{v}\|} |\mathbf{u} \cdot \mathbf{v}| & \leq 1 \\
|\mathbf{u} \cdot \mathbf{v}| & \leq \|\mathbf{u}\| \|\mathbf{v}\|
\end{align*}
\]

Equality holds exactly when \(\frac{1}{\|\mathbf{u}\|} \mathbf{u} = \pm \frac{1}{\|\mathbf{v}\|} \mathbf{v} \), which means exactly when one vector is a scalar multiple of the other.
Proof III. Recall that when a, b, c are real numbers with $a \neq 0$, the quadratic function $at^2 + bt + c$ has at most one real root exactly when $b^2 - 4ac \leq 0$. Further, in this case, $at^2 + bt + c = 0$ for some real t occurs exactly when $b^2 - 4ac = 0$.

If either $u = 0$ or $v = 0$, then $\mathbf{u} \cdot \mathbf{v} = 0$ and $\|\mathbf{u}\|\|\mathbf{v}\| = 0$, so the desired equality holds. For the remainder of the proof, we will assume that \mathbf{u} and \mathbf{v} are nonzero vectors.

Consider the function $f(t) = \|t\mathbf{u} + \mathbf{v}\|^2$. Clearly, $f(t) \geq 0$ for all $t \in \mathbb{R}$. Further, $f(t) = 0$ for some real t exactly when $\|t\mathbf{u} + \mathbf{v}\|^2 = 0$, which is to say, when $\mathbf{v} = -t\mathbf{u}$ for some real number t. That is, equality holds exactly when one vector is a scalar multiple of the other.

For all real t,

\[
\|t\mathbf{u} + \mathbf{v}\|^2 = (t\mathbf{u} + \mathbf{v}) \cdot (t\mathbf{u} + \mathbf{v}) = t^2\mathbf{u} \cdot \mathbf{u} + 2t\mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v} = \|\mathbf{u}\|^2 t^2 + (2\mathbf{u} \cdot \mathbf{v})t + \|\mathbf{v}\|^2
\]

Let $a = \|\mathbf{u}\|^2 > 0$ since \mathbf{u} is nonzero; let $b = 2\mathbf{u} \cdot \mathbf{v}$; and let $c = \|\mathbf{v}\|^2$. The condition $b^2 - 4ac \leq 0$ is equivalent to $(2\mathbf{u} \cdot \mathbf{v})^2 - 4\|\mathbf{u}\|^2 \|\mathbf{v}\|^2 \leq 0$. Equivalently, $(\mathbf{u} \cdot \mathbf{v})^2 \leq \|\mathbf{u}\|^2 \|\mathbf{v}\|^2$. Taking the square root of each side produces the desired inequality. Equality occurs in each of these inequalities exactly when $\|t\mathbf{u} + \mathbf{v}\|^2 = 0$ for some real t, which is to say, when one vector is a scalar multiple of the other.