Skip to main content
\(\def\Z{\mathbb{Z}} \def\zn{\mathbb{Z}_n} \def\znc{\mathbb{Z}_n^\times} \def\R{\mathbb{R}} \def\Q{\mathbb{Q}} \def\C{\mathbb{C}} \def\N{\mathbb{N}} \def\M{\mathbb{M}} \def\G{\mathcal{G}} \def\0{\mathbf 0} \def\Gdot{\langle G, \cdot\,\rangle} \def\phibar{\overline{\phi}} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\Ker}{Ker} \def\siml{\sim_L} \def\simr{\sim_R} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)


John B. Fraleigh, A First Course in Abstract Algebra (7th ed.), Addison Wesley, 2002.
Thomas W. Judson, Abstract Algebra: Theory and Applications. Revised edition published under the GNU Free Documentation License, 1997 (revised 2016).
Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery. An Introduction to the Theory of Numbers (5th ed.), John Wiley and Sons, 1991.