Math 152 Exam 3 (Diff Eq)

Name _____________________

The ease with which your solutions can be followed is as important as the final answer.
Be sure your plan and the order of your steps are clear to the reader.

(Evaluate $e^1 = 1$, $\cos(\pi/4) = \sqrt{2}/2$ etc. Leave $\cos(5)$, E, etc. unevaluated.)

You may use a 3 by 5 card. You may write on both sides of the card.

You may use calculators, but calculator answers are not acceptable substitutes for clear work and/or explanations.

Give reasons whenever it will help the reader follow the work.

1. Use Euler’s method with initial condition $y(-0.5) = 0.5$ and step size $\Delta x = 0.25$ to find a numerical solution to $\frac{dy}{dx} = xy$ from $x = -0.5$ to $x = 0.5$. Clearly show the Euler Table.

 (10pt)

2. For each of the following differential equations, list all functions from the given list that satisfy it.

 a. (6pt) $\frac{dy}{dx} = \frac{y}{x}$
 ans._________________
 i. $y = 0$
 ii. $y = x^2$
 iii. $y = 2x$
 b. (6pt) $\frac{dy}{dx} = 2y$
 ans._________________
 iv. $y = e^{2x}$
 v. $y = 2e^x$

3. (3pt. each) Match each slope field to the differential equation which it represents. If there is no slope field matching an equation, write “None”.

 a. $\frac{dy}{dx} = 2y$ ans._________________
 b. $\frac{dy}{dx} = \frac{y}{x}$ ans._________________
 c. $\frac{dy}{dx} = \frac{y}{x}$ ans._________________
 d. $\frac{dy}{dx} = y \sqrt{x}$ ans._________________
4. (10pt) Solve by separation of variables: \(\frac{dy}{dx} = \frac{x}{y} \quad \text{y(0) = 4} \)

5. The growth of a certain animal population is governed by the equation:

\[
\frac{1000}{P} \frac{dP}{dt} = 100 \quad P
\]

where P(t) is the number of individuals at time t.

a. (5pt) Sketch a graph of \(\frac{dP}{dt} \) as a function of \(P \). Show clearly where \(\frac{dP}{dt} \) is zero, positive and negative.
b. (5pt) Sketch a graph of the slope field of the differential equation.

\[\begin{array}{c}
\text{p} \\
\hline
\hline
\text{t}
\end{array} \]

c. (5pt) The initial population is 200 individuals. Will the population ever exceed 200? Explain clearly.